The challenge of heavy metal ions in wastewater was addressed by synthesizing boron nitride quantum dots (BNQDs) in-situ on rice straw-derived cellulose nanofibers (CNFs) as a base material. As corroborated by FTIR, the composite system demonstrated strong hydrophilic-hydrophobic interactions, combining the exceptional fluorescence of BNQDs with a fibrous CNF network (BNQD@CNFs) to create luminescent fibers with a surface area of 35147 square meters per gram. Hydrogen bonding, according to morphological studies, resulted in a uniform distribution of BNQDs across CNFs, exhibiting high thermal stability with peak degradation at 3477°C and a quantum yield of 0.45. The BNQD@CNFs' nitrogen-rich surface demonstrated a potent attraction for Hg(II), thereby diminishing fluorescence intensity through a combination of inner-filter effects and photo-induced electron transfer. The limit of quantification (LOQ) was established at 1115 nM, while the limit of detection (LOD) was 4889 nM. Concurrent Hg(II) adsorption was exhibited by BNQD@CNFs, firmly supported by X-ray photon spectroscopy, owing to significant electrostatic interactions. A 96% removal of Hg(II), at a concentration of 10 mg/L, was observed, facilitated by the presence of polar BN bonds, with a maximum adsorption capacity reaching 3145 mg/g. Parametric studies aligned with a pseudo-second-order kinetic model and a Langmuir isotherm, showing a correlation coefficient of 0.99. In real water sample testing, BNQD@CNFs exhibited a recovery rate ranging from 1013% to 111%, and demonstrated recyclability up to five cycles, showcasing their promising application in wastewater remediation
Employing a selection of physical and chemical techniques allows for the preparation of chitosan/silver nanoparticle (CHS/AgNPs) nanocomposites. The reactor of microwave heating was rationally chosen as a benign approach to produce CHS/AgNPs, contributing to both reduced energy consumption and expedited particle nucleation and growth. Through the use of UV-Vis spectroscopy, FTIR spectroscopy, and X-ray diffraction, the formation of AgNPs was definitively established. The spherical shape of the particles, and a size of 20 nanometers, was confirmed by transmission electron microscopy imaging. Nanofibers of polyethylene oxide (PEO) containing CHS/AgNPs, fabricated via electrospinning, were subjected to analyses of their biological properties, including cytotoxicity, antioxidant activity, and antibacterial activity. Across the different nanofiber compositions (PEO, PEO/CHS, and PEO/CHS (AgNPs)), the mean diameters are 1309 ± 95 nm, 1687 ± 188 nm, and 1868 ± 819 nm, respectively. Exceptional antibacterial activity was shown by the PEO/CHS (AgNPs) nanofibers, featuring a ZOI against E. coli of 512 ± 32 mm and against S. aureus of 472 ± 21 mm, which can be attributed to the small particle size of the incorporated AgNPs. Non-toxic properties were observed in human skin fibroblast and keratinocytes cell lines (>935%), implying the compound's considerable antibacterial capacity to combat or avert infections in wounds, thus minimizing unwanted side effects.
Intricate interactions between cellulose molecules and small molecules in Deep Eutectic Solvent (DES) environments can result in significant alterations to the hydrogen-bonding network structure of cellulose. However, the process by which cellulose molecules engage with solvent molecules, and the growth of the hydrogen bond network, continues to elude explanation. The present study involved treating cellulose nanofibrils (CNFs) with deep eutectic solvents (DESs) composed of oxalic acid acting as hydrogen bond donors, along with choline chloride, betaine, and N-methylmorpholine-N-oxide (NMMO) as hydrogen bond acceptors. The impact of three solvent types on the properties and microstructure of CNFs was analyzed via Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The results of the study on the CNFs demonstrated no modification in their crystal structures during the process, in contrast, their hydrogen bond networks evolved, resulting in elevated crystallinity and increased crystallite sizes. Analysis of the fitted FTIR peaks and generalized two-dimensional correlation spectra (2DCOS) demonstrated that the three hydrogen bonds exhibited varying degrees of disruption, shifting in relative abundance, and progressing through a strict, predetermined order of evolution. From these findings, we can ascertain a regular progression in the evolution of nanocellulose's hydrogen bond networks.
Autologous platelet-rich plasma (PRP) gel's capacity to facilitate swift wound healing, free from immune rejection, has broadened therapeutic options for diabetic foot ulcers. PRP gel's inherent weakness lies in the rapid release of growth factors (GFs) that demands frequent administrations, thus impacting the overall efficiency of wound healing, increasing costs and intensifying pain and suffering for the patients. To create PRP-loaded bioactive multi-layer shell-core fibrous hydrogels, this study established a flow-assisted dynamic physical cross-linked coaxial microfluidic three-dimensional (3D) bio-printing technology, complemented by a calcium ion chemical dual cross-linking method. The prepared hydrogels displayed exceptional water retention and absorption, exhibited excellent biocompatibility, and demonstrated a broad-spectrum antibacterial capability. These bioactive fibrous hydrogels, in contrast to clinical PRP gel, manifested a sustained release of growth factors, leading to a 33% reduction in treatment frequency during wound healing. Their therapeutic effects were more notable, including a reduction in inflammation, along with the promotion of granulation tissue growth, and enhanced angiogenesis. Furthermore, these materials facilitated the development of dense hair follicles and the formation of a highly ordered, high-density collagen fiber network. This indicates their promising status as superior candidates for treating diabetic foot ulcers in clinical settings.
This study's purpose was to explore and detail the physicochemical properties of rice porous starch (HSS-ES), fabricated using high-speed shear and double-enzymatic hydrolysis (-amylase and glucoamylase), and to illuminate the underlying mechanisms. 1H NMR and amylose content measurements indicated that the molecular structure of starch was modified by high-speed shear, resulting in an elevated amylose content, exceeding 2.042%. High-speed shear, as assessed by FTIR, XRD, and SAXS spectroscopy, resulted in no change to the starch crystal configuration. Conversely, it led to a reduction in short-range molecular order and relative crystallinity (2442 006%), producing a more loosely organized, semi-crystalline lamellar structure, thus promoting subsequent double-enzymatic hydrolysis. The HSS-ES, possessing a superior porous structure and a larger specific surface area (2962.0002 m²/g), exhibited a notable improvement in water and oil absorption capabilities compared to the double-enzymatic hydrolyzed porous starch (ES). Specifically, water absorption increased from 13079.050% to 15479.114%, while oil absorption increased from 10963.071% to 13840.118%. In vitro digestive analysis indicated that the HSS-ES possessed good digestive resistance, a consequence of its higher content of slowly digestible and resistant starch. The current study highlighted that the enzymatic hydrolysis pretreatment, employing high-speed shear, resulted in a substantial increase in pore formation within rice starch.
Plastic's impact on food packaging is immense; it primarily maintains the food's state, lengthens its shelf life, and ensures its safety. The global production of plastics routinely exceeds 320 million tonnes yearly, a figure reflecting the escalating demand for its versatility across a broad range of uses. Crop biomass The packaging industry's significant use of synthetic plastic is tied to fossil fuel sources. Packaging applications frequently favor petrochemical-based plastics as the preferred material. In spite of that, utilizing these plastics in large quantities produces a prolonged environmental effect. Concerned about environmental pollution and the diminishing supply of fossil fuels, researchers and manufacturers are striving to create eco-friendly biodegradable polymers that can substitute petrochemical-based ones. Biomimetic water-in-oil water Hence, the production of sustainable food packaging materials has inspired increased interest as a practical alternative to polymers from petroleum. Polylactic acid (PLA), a compostable thermoplastic biopolymer, is inherently biodegradable and naturally renewable. For the creation of fibers, flexible non-wovens, and hard, durable materials, high-molecular-weight PLA (above 100,000 Da) is a viable option. The chapter delves into strategies for food packaging, including the management of food industry waste, the classification of biopolymers, the synthesis and characterization of PLA, the critical role of PLA properties in food packaging, and the technological processes for PLA utilization in food packaging applications.
Slow or sustained release systems for agrochemicals are a key component in improving both crop yield and quality while also benefiting environmental health. In parallel, an excessive accumulation of heavy metal ions in the soil can create harmful effects on plants, leading to toxicity. In this instance, lignin-based dual-functional hydrogels containing conjugated agrochemical and heavy metal ligands were produced through free-radical copolymerization. By manipulating the hydrogel's components, the presence of agrochemicals, comprising 3-indoleacetic acid (IAA) and 2,4-dichlorophenoxyacetic acid (2,4-D), was precisely regulated within the hydrogels. The gradual cleavage of the ester bonds within the conjugated agrochemicals results in a slow and sustained release of the agrochemicals. Subsequent to the DCP herbicide's discharge, lettuce growth exhibited a controlled progression, confirming the system's feasibility and successful application. LPSs Metal chelating groups, such as COOH, phenolic OH, and tertiary amines, contribute to the hydrogels' dual roles as adsorbents and stabilizers for heavy metal ions, ultimately improving soil remediation and preventing plant root uptake of these harmful substances. Adsorption studies indicated that Cu(II) and Pb(II) achieved adsorption capacities exceeding 380 and 60 milligrams per gram, respectively.